2x^2-4x-213=0

Simple and best practice solution for 2x^2-4x-213=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x^2-4x-213=0 equation:



2x^2-4x-213=0
a = 2; b = -4; c = -213;
Δ = b2-4ac
Δ = -42-4·2·(-213)
Δ = 1720
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1720}=\sqrt{4*430}=\sqrt{4}*\sqrt{430}=2\sqrt{430}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{430}}{2*2}=\frac{4-2\sqrt{430}}{4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{430}}{2*2}=\frac{4+2\sqrt{430}}{4} $

See similar equations:

| 34+8k=(k+4 | | 34+8k=(k+4 | | 34+8k=(k+4 | | 34+8k=(k+4 | | 34+8k=(k+4 | | 34+8k=(k+4 | | 34+8k=(k+4 | | 34+8k=(k+4 | | 34+8k=(k+4 | | 34+8k=(k+4 | | 34+8k=(k+4 | | 34+8k=(k+4 | | 34+8k=(k+4 | | 34+8k=(k+4 | | 34+8k=(k+4 | | 34+8k=(k+4 | | 3*x=300-x | | 3+p=9+1/3 | | 3+p=9+1/3 | | 3+p=9+1/3 | | 2(+3)+2=2+4+2y | | (4+2x)2=5 | | (4+2x)2=5 | | 28+-3x=10 | | 5x=2+3x+14 | | .5k+2=6 | | 9=s−6 | | 9=s−6 | | 9=s−6 | | 9=s−6 | | 12=–3m | | 12=–3m |

Equations solver categories